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Abstract: Degradation of the side-chain of larixol 1, isolated from the turpentine oil of Larix sp., led to
ester 6, useful intermediate for the synthesis of polyhydroxylated labdane diterpenes. Microbial
hydroxylation of larixol and derivatives led to 2a-hydroxylated compounds which could be used for the
hemisynthesis of forskolin type compounds.

In previous papers, we reported the total syntheses of racemic polyoxygenated diterpenes, galanolactone,!
crotomachlin,? possessing attractive biological activities. Hence, we needed a more efficient access to these
compounds, in enantiomerically pure form, for pharmacological evaluation. Hemisynthesis from an easily
available precursor might be a solution to this problem.

Due to its structure and its availability, larixol 1 looks to be an excellent candidate as a starting material for
this purpose. It is a diterpene of the labdane series, which has been isolated, as its 6-acetate, from the turpentine
oil of Larix deciduaj, L. europea and L. sibirica.3 Its siructure has been determined by Norin et al.4 and the
absolute configuration of the side-chain was defined as 13-(S5).5

In this paper, we report a degradative study of the side-chain of larixol to obtain chiral intermediates for the
synthesis of various diterpenes. The microbial hydroxylation of the A ring of larixol or derivatives is also
described, leading to compounds potentially useful for the synthesis of forskolin® or related compounds.

Oxidation of larixol with Dess-Martin periodinane’ led to ketone 2 which was transformed into the
conjugated ketone 3 with methanolic sodium methoxide (93 % for two steps). The 14-15 double bond was
selectively epoxidized with t-butyl hydroperoxide in the presence of VO(acac)y according to Sharpless’
procedure.8 A mixture of diastereomeric epoxides 4 was obtained (93 %) in a 7/3 ratio.9 Epoxidation with
mCPBA furnished a 1/1 mixture of diastereomers and some epoxidation of the 7-8 double bond occurred.
Periodic acid oxidation of epoxides 4 gave diketone 510 in 60 % yield. This diketone submitted to regioselective
Baeyer-Villiger oxidation (mCPBA, 1.5 eq., BF3.0Et; 1.5 eq., rt, 48 h) furnished the acetate 611 in a moderate
30% yield, besides unreacted starting material (ca. 50%) (scheme 1). Various conditions were tried (CF3CO3H,
mCPBA, mCPBA in the presence of CF3C0O2H!2) without improvement of this yield. The ester 6 is an important
intermediate for the total synthesis of polyoxygenated diterpenes. We had prepared the corresponding t-
butyldimethylsily! ether, in racemic form, from B-ionone for the total synthesis of crotomachlin and 8-epi-
crotomachlin.2
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a) Dess-Martin periodinane, 1 eq. CHyCly, 1h. rt, then ether, aqueous NaOH, 1h, 95 % ; b) 1N methanolic
NaOMe, 1h. 1t 98 % ; ¢) t-BuOOH, VO(acac);, lutidine, 38°C, 12h, 93 % ; d) I0sHs, 1 eq., THF, H20, rt, 3h,
60 % ; ¢) mCPBA, 1.5eq., BF3.0Et; 1.5 eq., CH2Cly, 48h, 30%.

Highly selective biotransformations of readily available natural compounds are of considerable value for the
partial syntheses of bio-active compounds. Hydroxylations are well-known examples of these transformations
and many papers reported such hydroxylations of diterpenes by fungi.13 The presence of a hydroxyl at C(1} in
forskolin, led many authors to study microbial hydroxylation of related compounds either to transform inactive
diterpenes from Coleus forskolii into forskolin14 or to have access to synthetic chiral intermediates.15 Larixol
derivatives, already functionalized on carbons 6, 7 and 8 of the B ring, might provide interesting derivatives for
the hemisynthesis of forskolin or analogs after appropriate functionalization of the A ring.

Mucor plumbeus LCM was selected in our laboratory as a high activity hydroxylating fungus.
Hydroxylation of the 3p position of sclareol by a strain of Mucor plumbeus has been recently published.16 We
studied the microbial oxidation of larixol 1 and derived compounds, ketones 3, 4 and 5, by this
microorganism.!5 The major products we obtained from 1, 3 and §, resulted in the introduction of a 2a.-
hydroxyl. The signal of the 28-H in the !H nmr specira of compounds 7 (60 % yield),17 8 (37 % yield)!8 and 9
(35 % yield)!9 as triplet of triplet (J=12 Hz, J'=4 Hz) led unambigously to this assignment, this position being
the only one giving a proton with this multiplicity, two axial-axial coupling constants and two axial-equatorial
coupling constants. No other transformation products could be characterized. Regioselective hydroxylations at
C(2), 20 and/or 28, have been described with various deoxy-forskolin derivatives in 2 up 24 % yield according
the microorganisms which have been used.!4 The yields of the biotransformations we described herein are quite
higher. With our strain of Mucor plumbeus, sclareol gave as a major product the 3-ketone 10 (47 % yield), the
structure of which was demonstrated by NaBHj reduction to 3B-hydroxy derivative previously described!6 and
the 6o and 18-hydroxy! compounds (1/1 mixture, 48 % yield).15 Under similar conditions, the keto-epoxides 4
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led to the 14,15-dihydroxy derivatives 11 (50 % yield), in the same ratio (7/3) as in the starting mixture of
epoxides, without further transformation.
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In conclusion, in this preliminary communication, we presented results showing the potential interest of
larixol for the hemisynthesis of various labdane diterpenes. Applications in this area will be published
subsequently.
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